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ABSTRACT

The problem of minimax robust source coding under a fidelity criterion for sources
whose statistics belong to uncertainty classes determined by 2- alternating Choquet
capacities is examined. We consider (i) single-letter difference distortion criteria for
discrete memoryless sources whose probability distributions belong to capacity classes
and (ii) the mean- square error distortion criterion for stationary Gaussian sources whose
spectral measures be}ong to capacity classes. Both block source codes and’ trellis source
codes are considered. It is shown that there exists an ensemble of block source codes
and an ensemble of trellis codes such that for all rates larger than a critical rate and all
sources in the class the average distortion converges to any prescribed fidelity level
exponentially with increasing block length or constraint length, respectively. Besides the

rate distortion function, the distortion exponent of the class is also evaluated.
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I. INTRODUCTION

For sources whose statistical description (i.e., the probability distribution which
governs the source statistics) is known, Shannon [1] in his renowned source coding
theorem showed that, if the code rate is larger than a critical rate (termed the rate dis-
tortion function), we can by using block source codes represent the source in any given
alphabet and asymptotically satisfy a fidelity (distortion) criterion. Furthermore it was
shown (e.g. [2], [3]) that the asymptotic convergence to a given distortion level is
exponential in the code length. Similar results for trellis source codes were established

in [4]) and [3].

For sources whose statistics are not perfectly known but the determining quantity
(e.g., the probability distribution) belongs to a class the rate distortion function was

found in [5] to be su;;Rs (D) whose S is the class of. probability distributions of the
EAS

sources and R, (D) is the rate distortion function at a distorition level D for a particular

member s of the class.

As far as coding is concerned two approaches have been followed. According to the
first approach termed universal coding and described in [6] - [10] (we have not attempted
to compile a complete listing of all the-papers on the subject) the source is represented
or approximated as a finite composite of stationary ergodic subsources and a union code
is formed from the codes which are optimal for these representative subsources. Then,
all sources in the class have asymptotically optimal coded performance. This approach
is applicable to a large number of cases (e.g., general alphabets and distortion measures),
since it is independent of the source statistics. Two disadvantages of this approach are:
(i) a large number of representative subsources may be necessary and.(ii) the construc-

tion of the representative subsources for a given class can be very complicated.
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The second dpproach termed minimazx robust coding is based on a worst-case
design. The least-favorable source is singled out and we subsequently code for it. Then
the average distortion approaches any prescribed fidelity level exponentially with increas-
ing block length for all sources in the class. The disadvantage of this approach is that
the asymptotic coded performance is not optimal for all but the least-favorable source in
the class. However, this approach is attractive because it requires only one representa-
tive source for the class (the least-favorable one) which can be explicitly found in several
interesting cases. This approach was considered in [11] for some different classes of
sources than those considered in this paper. For stationary Gaussian sources with spec-
tral uncertainty within classes similar to those considered in this paper the rate distor-
tion function over the class was derived in [12] but no minimax source coding theorems
were established. Finally, minimax noiseless block source coding was considered in [13],
and [14]. Again, no effort to compile a complete listing of all the papers on the subiect

has been made.

In this paper we apply the minimax coding approach for block and trellis source
codes which satisfy a fidelity criterion to discrete- memoryless sources (DMS’s) and
discrete-time stationary Gaussian sources (SGS’s) which belong to classes determined by
2-alternating Choquet capacities {15]. Our choice of these uncertainty models is justified
in two ways. First, important uncertainty models like contaminated mixtures {16], total
variation neighborhoods [i8], band models {17] - {18], and extended p-point models {18]
are capacity classes and have played an important role in hypothesis testing [19] and
filtering {20]. Second, the least-favorable sources can be explicitly found for the uncer-
tainty classes described by any of the above models. In this paper we restrict attention
to DMS’s and discrete-time SGS’s (continous-time SGS’s are also discussed), because

these are the simplest nontrivial cases of interest with which our techniques can be
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illustrated. Our results can be extended to other classes of sources; e.g., homogenous
first-order Markov .sources. Similar results for the dual minimax robust channel coding

problem are described in [21].

This paper is organized as follows. Minimax robust coding under a fidelity criterion
is discussed in Section II for difference distortion criteria and discrete-memoryless sources
with uncertainty in the probability distribution, and in Section III for the mean-square-
error distortion criterion and stationary Gaussian sources with spectral uncertainty. In
each of these sections we first present the uncertainty models that we consider and intro-
duce the necessary notation. Next, we formulate the mismatch source coding problem
and establish the appropriate coding theorems for both block and trellis source codes.
Finally, we derive the coding theorems for minimax robust source coding over the uncer-
tainty class. In particular, we show that there exist an ensemble of block soufce codes
and an ensemble of trellis source codes such that, provided the code rate is larger than a
critical rate, the average distortion converges exponentially to any prescribed fidelity
level with increasing block length or constraint length, respectively, for all sources in the
uncertainty class. Then, in Section IV a brief summary of this paper and some conclu-

sions are presented.
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II. ROBUST CODING FOR DISCRETE MEMORYLESS SOURCES
A. Uncertainty Classes Generated by Choquet Capacities

Suppose that U is the source alphabet, V is the representation (or user) alphabet,
and F', G are the o-algebras generated by subsets of U and V, respectively. A discrete
memoryless source is characterized by the probability measure @ (A ) A EF. We assume
that the probability measures ¢ are only known to lie in a convex class generated by a

Choquet 2-alternating capacity [15]

Qw=1{0€eQ | Q4)< w(Ad) AcF} (1)
where Q denotes the class of all probability measures on (U ,F), and w is a 2-alternating
capacity on (U ,F) with w (U )==1.

A Choquet 2-alternating capacity [15] on (U, F) is a finite set function, which is
increasing, continuous from below, continuous from af)ove on closed sets, and satisfies
w($0) =0 and w(A | JB) + w(ANB) < w(A) + w(B) for all A,BEF. Notice that
any finite measure w is a 2-alternating capacity; in this case the uncertainty class gen-
erated by (1) reduces to Q,, = {w }. If we further assume that U is compact then all
the uncertainty moAdels mentioned in the Introduction are capacity classes. If U is not

compact [e.g., U == (~00,00)] only the band model can be defined in terms of a capacity.

Examples of 2-alternating capacity classes are: the band model [17} defined by
Qu, =1{Q€Q| Q@A) < Q(A) < @,(A), VAEF}, (2a)

where @, and ¢, are known measures (not necessarily probability measures) with

QoU)Y <1 < Q,(U); the e-contaminated mixtures model [16] defined by

Quw, = {Q€Q[Q(A) = (1-)Q(A) + ¢P(A), VAEF, PEQ}, (2b)




where @, is a known probability measure and the number € in (0,1) is the degree of

uncertainty in the m.odel; and the total variation model [16] defined by
Qw,={Q€Q| [Q(A)-Q«A)| < e VAEF}, (2¢)

where @, is a known probability measure and the number € in (0,1) is again the degree

of uncertainty in the model. Then (2a) - (2¢) can be expressed in the form (1) if we set
wy(A) = min{1-Q(A°), @(4)} (32)
for the band model,
wy(A) = (1-€)Q(A) + ¢ (3b)
for the ¢~-contaminated model, and

wy(A) = min{Q4) + ¢, 1} (30)

for the total variation model. See (18] for a description of the p-point capacity class.

In the sequel we will need the following fundamental result due to Huber and

Strassen [19]:

Lemma 1: 1f w is a 2-alternating capacity on (U F), Q,, is a convex class of probability
measures determined by it as in (1), and X is the Lebesgue measure on U, then there
exists a unique Lebesque measureable function m,: U —[0,00] with the defining property

that for all z €[0,00] and A, defined by A, = {nr, > 2}

XA +w(A)) < zNA) +w(A°), VAEF. (4)
Furthermore there exists a measure ¢ in @, such that for all z €[0,00].

QUm, <zh) =w({m, <z}, (8)

which means that  makes m, stochastically smallest over all @ in Q,, , and 7, is a
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version of dQ /d )\, the generalized Radon-Nikodym derivative of  with respect to X;

that is, dQ /d X\ may be infinite on sets of A measure 0.

The function 7, is termed the Huber-Strassen derivative of w with respect to X (w
may not be a measure). The probability measure Q singled out by Lemma 1 is termed
the least-favorable measure of the class Q,,. Let Q@ = @’ + Q' ' be the Lebesgue
decomposition of ¢, where Q' is absolutely continous with respect to A and Q' ' is
singular with-respect to A (that is, it concetrates all its mass on sets of A measure 0).

Then,
Qf(A):fAvrwdx (6a)
and
Q' (A)=w(A N {r, = oo}), (6b)
for all A €F. For the band model the Huber-Strassen derivative 7,, = ¢ is defined as

§,(u) = max{qgo(u), min{c, ¢,(u)}}, (7a)
where q; = dQ; /d X is the Radon-Nikodym (R-N) derivative of @; of (2a) for j = 0,1
and ¢ is chosen so that Q,(U) = 1. For the e-contaminated model the corresponding
definition is

Go(u) = max{(1-€)qo(u), ¢}, (7D)
where ¢, is the R-N derivative of @, of (2b) and c is chosen so that Q4 U) = 1. Simi-
larly for the total variation neighborhood model we have

Ga(u) ==max{c’ , min{c' ', go(u)}}, (7¢)

where ¢g is the R-N derivative of the @, of (2¢) and ¢’/ , ¢’ ' are chosen so that

Q4(U) == 1. See [18] for the definition of § for the p-point class model.
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It should be noted that Huber-Strassen derivatives of generalized capactties [a gen-
eralized capacity is defined in the same way as a 2-alternating capacity except that it is
required to be continuous from above on compact (and not just closed) sets] with respect
to o-finite (and not just flnite) measures can be constructed (22, Chapter IV]. One of the
implications of this extension is that several of the most useful examples of capacity
classes (e.g., e-mixtures,variation neighborhoods) are generalized capacities when U is o-
compact (and not just compact). Then,r if U is o-compact and thus X is o-finite, Lemma

1 still holds.

For the proofs of the minimax robust coding theorems in Section II.C below we
need to assume that the least-favorable measure Q of the capacity class Q. is abso-
lutely continuous with respect to the Lebesgue measure A on U (ie, § << X). This
assumption is satisfied, provided that ¢, <<< X for the band class and @, << A for the

e-contaminated and total variation neighborhood classes.

We would also like to mention at this point that if U is a discrete alphabet then
§(u) for u €U becomes a probability mass function (pmf) and all the results involving
the capacities described above still hold, provided that we replace the integrals with
respect to u with sums and the Radon-Nikodym derivatives with pmf’s. This duality
becomes possible if we rep'lace the Lebesgue measure 6n U (in the continuous case) with
the measure which assigns equal mass to all the elements of U (in the discrete case) in
Lemma 1 and apply the Huber-Strassen theory to this case. See [23] for a more exten-
sive discussion of this duality. Therefore, in the sequel we will be working with continu-
ous amplitude sources, pdf’s, and integrals ,but the results will still be valid for the

corresponding situations with discrete amplitude sources.
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B. Mismatch Source Coding Theorems for Block and Trellis Codes

* In this paper we consider DMS’s with V' = (~00,00) and single-letter difference dis-
tortion measures d(u,v) = d(v-u), u€U, vEV which satisfy the bounded variance

condition

J, ¢*)dQ ) < dq (®)

for some finite positive number d, and all @ in Q,, . Let D be the maximum level of
average distortion ber letter that we can tolerate when we represent letters from the
source alphabet U with letters from the user alphabet V. We define the average distor-
tion per letter associated with a difference distortion criterion d(-) which satisfies (8), a
conditional probability density function (pdf) p(v | u), and a source with probability

measure ¢ in Q,, by

D(p.@)=[, [, p(v |u)d(u,vINdv)dQ (u). 9)

Furthermore, if we assume that p(v |u) =p(v-u) for v€U, vE€V, (9) is equivalent

to

D(»,Q)=D®)Q" (U) < D)= f, d(=)p(z)\dz). (10)

Equation (10) follows from (9) after performing the substitution z==v-u and taking into
account the facts that V == (-00,00) and Q' (U) < @ (U) = 1. Notice that in (10)
the average distortion D (p,Q ) is upperbounded by D (p) which does not depend on @) .
This fact will be critical for establishing the results of the next Sections. The need for
the aforementioned assumptions will become clear in subsection I[.C (during the proof of

the main results stated in Theorems 3 and 4).

Suppose now that in the presence of uncertainty about ¢ the user mistakenly

assumes that (or attempts to estimate ) and comes with an estimate that) Q is the
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1
E(pp.3:Q) = - n{], ‘;‘(lu‘; J, B [0) ¥P 5 oNdo) 7 dQ (u)} (152)

: 1 p
= —In{[, ([, p 1) "7 ([ pv]u’ Yg(u' Ndu' )} MNdv)]*** dQ (u)}

(15b)

and d, was introduced in (8). For this theorem to be valid it is required that
I(p,4;Q)>0 and E(p,p,q;Q)<<0 for all p in [-1,0]. However, these inequalities are

satisfied for all nontrivial p, ¢, and Q.

Remark 1. The quantities I(p,q;@ ) and E(p,p.,q;Q ) represent the mismatch mutual

information function and the mismatch distortion exponent, respectively.

Remark 2. We consider Theorem 1 and Theorem 2, which follows, important in two
ways: as being fundamental intermediate results necessary for the proof of the main
Theorems 3 and 4 below, and as interesting independent results which characterize
source coding with a fidelity criterion {for both block and trellis codes) in the case of
mismatch (i.e., when the actual probability measure of the source is different than the

estimate employed in the encoding procedure).

Proof: Our proof bhasically follows from a modification of the proof of the source coding
theorem for the matched case g =¢ (Q =0 has a pdf in this case) given in [3, Sections
7.5.1 and Lemma 7.2.2]. Thus we only present here these points of the proof of [3]
which were considerably modified. It was shown in [3] that we can express the average
distortion D, achieved using a particular code C={vy, v, ..., Uy} where

v, €V, m=1,2..,M,and M = [e"?] as

—=m



-11-

1

D, <D(r.Q) + do[fw yn Pn(@ |u)B(u,g;C))xn(y)dQn(u)]? (18)
In  (16) d@Q,(v)= ﬁ d@ (u;), po(v|u)= I"I p(v; ) for weU",veEvV™,

i=1 i=1

A (du) = ﬁ A(dy;), and

t=1

1; dn(ll_,ll) < min dn(!;ﬂ' )
v €C

B(u,2;C)= (17)

0; d,(u,2) > min d,(u,0' )
vl el

Next we proceed to bound D—c the average of D, over the ensemble of block source

codes described in Theorem 1. The members of this ensemble are assigned the product

: M n
distribution P(C)= T Pn(2n) where Po(w)= 11 P (v;) and
m=1 i=1
p(v) = fU p(v | u)g(u)X(du) for veEV. Then, since

Pa(u |v) = po(v | 2)g, (2)/P,(v), we can write E, the quantity inside the brackets in

(16) as

_ 1 - s
E, = fUn . [ o Pnll IQ)B(ﬂyﬁyO)pn(l&»\n(dﬂ)] d@y (u), (18)

and apply for p in [-1,0] Holder’s inequality:

L
o

[ redn < (f redn)*(f o%an)’. (19)

where 1< <00, 1< B< 00, and o+ gt =1, for
J =bp(u|2),a=1/(1 +p) g = Buv;C), =1/(p), and dp = p,(v) X\, (dv)
to obtain

. 1+p

o Bua 12 70y (), (du)

E

¢ — o~

qn (u)
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(1, B 20w, @) | a0, @) (20)

Averaging F, over the code ensemble and applying Jensen’s inequality yields

_ -p

B, < e [-nBgop ;) |[[, B.oiom, @, @) ] (21)
where X denotes averaging X over the code ensemble. In [3, p.393] it was shown that

f . Bw,u;C)p, (@M, (dv) S M < e, (22)

Finally, by using inequalities (10) and (11), averaging (16) over the ensemble of block
source codes, and substituting from (21) and (22) we obtain (14). Then, condition (12),
definition (13), and the aforementioned positivity and negativity requirements follow
from the requirement that the exponent E (p,p,q;Q )-pR be strictly positive for p in [-

1,0] and the fact that

I03:Q) = [0E(pp.3:Q)/0p | (23)

p=0
in the same way as for the usual source coding theorem (e.g. [3, Lemmas 7.2.2 and 7.2.3))

We would like at this point to emphasize the necessity of the assumption that @ is
absolutely continuous with respect to X (i.e., § << X\). This was essential in deriving

equations (18), (20), (21) and (22).

We now show that the positivity and negativity requirements on I (p,qtidle ; Q)
and E4(p,p,q;Q) for all p in [-1,0], respectively, are satisfied for all pairs of (7,Q ). To
show the positivity of I(p,y;Q) we only need to apply the inequality
Inx > 1 - 27" (2 >0) and use the fact that p (v | v) and p(v) are pdf’s. To show the
negativity of E(p,p.q;Q) given by (15a) for all p in [-1,0] we first apply Holder’s ine-

quality  [see (19)] for f =Dp(u|v), a=1/(0+p), ¢ =1, =1/(-p), and
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dp =p(v)\(dv), then we multiply both members of the resulting inequality by
1/q(u), we integrate over U with respect to dQ(u), and finally take the negative loga-

rithm.

Similarly, for trellis source codes used as described in [3, Section 7.4]) with the

necessary modifications for the case of mismatch, the following result holds:

Theorem 2: Under the assumptions of Theorem 1, consider the ensemble of trellis codes

of constraint length K and rate R = L In M nats per source symbol satisfying (12)
n

which is generated by assigning N letters from the alphabet V independently and
according to i)(v)zfup(v | u)g(u)N\(du), vEV, to the branches of the trellis.
Then, the average distortion D_c over the ensemble of trellis source codes is upper-

bounded by Dg (p,p,q;Q) given by

J M%(K -1)p
0

(24)
Eop 2.Q)/R |

Dg(pp1;Q)=D + [
1-M

where -1 < p < Ey(p.p . 7:Q)/R.

Proof: 1t is a modification of the proof of the source coding therem for trellis codes (see
[3, Section 7.5.2]) for the matched case (§ == ¢) which takes into account the mismatch

arguments established during the proof of Theorem 1; therefore we do not repeat it here.

C. Minimax Robust Source Coding Theorems for Block and Trellis Codes

In this section we assume that the probability measure which governs the statistics

of the source is only known to lie in a class of the form (1) described in Section ILA.

The source encoder employs a measure ¢J in a way described in Theorems 1 and 2. The
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goal is to choose Q so that for all code rates larger than a critical rate the probability of
erroneous representation approaches zero with increasing blocklength for all sources in

the class.

To prove the main results of this section we need to assume that the following con-
dition is satisfied:
Condition C, The conditional pdf p which, for a given probability measure Q and the
corresponding density 7, minimizes I(p,7;Q) under the constraint (11) is of the form

p(w|u)=p(v-u)foral u€lU and veV.

What we really require with condition C\ is that

arg minI(p,7;Q) = arg min I(p,7;Q)
PEPp pEP) (25)

Where

Pp={peP|D(p)< D},

P, = {p€P|p(v |u) = p(v—u), Vu,v)EUxV,D(p) < D},

and P is the class of all conditional pdf’s. Therefore, if condition C is satisfied, we only
need to consider the smaller class PI') for which the average distortion D (p,Q ) is upper-
bounded by D (p) [see (10)]. To restrict attention to minimizations over the smaller
class PII) turns out to be necessary for Theorems 3 and 4 below to be valid. Condition
C, is not so restrictive when we consider difference distortion criteria and continuous
amplitude sources with V = (~00,00). For example, discrete memoryless Gaussian
sources with uncertainty in their probability distribution described by capacity classes
satisfy the above condition and so do the stationary Gaussian sources with spectral

uncertainty considered in Section TIIL.

Cad T s RS TR T 4T A

B T O N,
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We now state and prove the main results of this section:

Theorem 3 Suppose the probability distribution Q belongs to a class of the form (1)
and Q (let @ << X\ and § = dQ /d\) is the element of the class singled out by
Lemma 1. Then the following inequalities are true for all conditional pdf’s p, all @ in

Q.. and all p in [-1,0]:

I(p,3;:Q) < I(p.§;Q) < I(p.¢;Q) (26)

and

Eopp,3;Q) 2 Eolpr,i;Q). (27)

Suppose further that condition C, is satisfled for any fidelity level D . We consider pdf’s
p in the set PD' described above. Then the operating point (p,§j) where

p = arg min I(p,§;Q) for p satisfying D (p) < D and the source determined by § -
» A

form a saddle point for min max I(p,q;Q) under the fidelity -counstraint
(rg) @

D(p,Q)<D(p)<Djie,
I(p,;Q) < I(1.,4:Q@) < I(p.q:Q). (28)

The triple (p ,Q;Q) also represents a least-favorable operating point for the distortion

exponent as eq. (27) applied for p == § indicates. Finally, the condition

R>1(p,5;Q) (29)

is sufficient and necessary to guarantee that for the ensemble of block source codes of
length n and rate B determined by § (as described in Theorem 1, just set § == §) the
average distortion converges to the fidelity level D exponentially with increasing n for

all sources in the class.
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Remark 3. The quantity I(p ,q,”Q) represents the rate distortion function of the class

defined by (1).

Remark 4. Besides the inequality in (28) the following inequality also holds

1(p,¢;Q) < 1(5,§:Q) < I(p,3:Q) (30)
under the fidelity conmstraint D(p,Q) < D(p) <D, which implies that

I(p,7;:Q) = mgx min I(p,q;Q) for @ << X\, that is, the rate distortion function for
»

the source determined by @ is the worst-case rate distortion function over all sources in

Q. [in the usual notation: RQ D)= Qseugw Rg (D).

Proof: We first prove the inequalities (26) and (27). To prove the right-hand side ine-
quality in (26) we use Jensen’s inequality to show that I(p,§;Q)~I(p.,q;Q) < 0. For

b

the left-hand side inequality in (26) we notice that it is equivalent to:

[,G@dQ < [, G(3)dQ, (31)

where G(q):fv p(v | u)n p(v|u) Mdv). Since G(g) is a
J, atw p( ju’ Ndu')

decreasing function of § = =, , and according to Lemma 1 Q makes 7, stochastically
smallest over all @ in Q,,, the inequality in (31) is satisfied. Similarly, to prove the ine-

quality in (27) notice that it is equivalent [via (15b)] to the inequality

J,H(@)d@ < [ H(q)dQ (32)

, e 1+p
where H((]):{fvp(viu)1+”[fu(}(u’)p(v]u’ ))\((lu’)]1+p)\(dv)} . How-
ever, since (7(§) is a decreasing function of § == m,, for p in [-1,0] and according to

Lemma 1 @ makes 7, , stochastically smallest over all @ in Q,, (32) is satisfied and so
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is (27).

Next we prove inequality (28). The left-hand side inequality in (28) follows from
the left-hand side inequality in (26) for p = . Then, the right-hand side inequality in
(28) follows from the fact that, because of the definition of p, I($,7,Q) < I(p.§.Q)
and from the right-hand side inequality in (26). The constraint D (§) < D is satisfied

since the minimization of /(p,§;Q ) was performed under the constraint D(p) < D .

Condition C, is critical because it enables us to consider pdf’s of the form
p(v |u)=p(v-u) and thus use eq. (10) which guarantees that D (p,Q) is upper-

bounded by D (p ) which is independent of Q.

We now proceed to the final stage of the proof of Theorem 3. First, because of (28)
condition (29) implies that R >I(p,§;Q) for all § in Q,. Furthermore as discussed
above D(p) < D is satisfied independent of ¢ . Thus Theorem 1 applied for p = p
implies that for the ensemble of block source codes of rate K and length n (for which
the n letters of each codeword are chosen from the user alphabet V independently and
according to p [where p(v) = fU g (u)p (v | u)N(du) ,vEV], while the [e "R] codewords
are chosen independently and with equal probability) the average distortion converges to
the fidelity lev_el DV exponentially with increasing n. Since this is true for all ¢ in the
class under consideration the sufficiency of condition (29) is established. To prove its
necessity, notice that, according to the usual converse source coding theorem under a
fidelity criterion for the matched case, B < I(p,§ ;Q) implies that fidelity level D can

not be reached for the source determined by Q which is a member of the aforemen-

tioned class. This completes the proof of Theorem 3.

The proof of eq. (30) stated in Remark 4 is a result of the inequalities:
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1(,;) < I1($,9:Q) < I($.3;:Q) < I(p,§:Q)

where D (p) < D and D(p) < D. The first inequality follows from an application of
Jensen’ s inequality, the second inequality was proved as part of eq. (28), and the third

inequality follows from the definition of § as the minimizing argument for I(p,q;Q ).

At this point we discuss the choice of the operating point that is of a triplet of the
form (p,p,q), where p is the parameter in [-1,0] involved in the distortion exponent
Eqyp,p.9:Q)— pR, p is a conditional pdf in Pll), and § characterizes the ensemble of
block source codes. Thus, if our main objective is to operate at the minimum required
rate  [see (29)] them the operating point should be (p,f,§) where

p = arg max [Fy(p.p ,Q;Q) - pR). However, if our main objective is to minimize the
P
average distortion, then (p,p,q) where (p,p) = arg max[E (p,p,3;Q) — pR ] for p in
(o.p)

[-1,0] and p satisfying D (r) < D should be the operating point and the rate B should

satisfy B > I(p,§;q) instead of (29).

Notice that in contrast to the corresponding result for the dual robust channel cod-
ing problem (see [21]) the operating point (p,7,§) and the source determined by Q do

not form a saddle-point for max min{¥ 4(p,p . 7:Q) - pR]. This due to the fact that in
(p.p 7}

general it is not true that Ey(p,p,q;Q) 2 Ey(p,p.7:;Q) for § = ¢-

As a final comment for Theorem 3, notice that the minimum and maximum
involved [minimizing argument $, maximizing argument (p,p )] exist, since the functions
[(p,q;Q) and [Eyp.p,q;Q)— pR1, for ) << X\, are convex in p and concave in (p,p ),

respectively, p€[-1,0] and p belongs to a convex class.

For trellis source codes a similar result holds:

Theorem 4: Under the assumptions of Theorem 3 condition (29) guarantees that for the
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ensemble of trellis source codes of constraint length X and rate B = -;—lnM the average

distortion converges to the fidelity level D exponentially with increasing K for all

sources in the class. Furthermore, if we define (p' ,p' ) = arg {nir;DK (p,p,3:;Q), where
oo

1< p< Eypp,§;Q)/R and D(p) < D, then the following inequalities hold for all
Qin Q:

Dk(p' p' .4;:Q) < Dg(p' .p' .4;:Q) < Dk(p,p.3:Q). (33)
Proof: We first prove the inequalities in (33). The left-hand inequality in (33) follows
from the inequality in (27) applied for p=p' and p=p' , and the fact that

Dy (p,p.§:;Q) is a decreasing function of Ey(p,p,7;¢ ). The right-hand inequality fol-

lows from the definition of (¢ ,p’' ).

To complete the proof of Theorem 4 notice that (29) together with the left-hald
inequality in (28) implies that B >I1(p,§;@) for all @ in the capacity class. Further-
more, any p which satisfles -1 < p < Eo(p,§,7;Q)/R also satisfies [because of (27)]
-1 < p < Eypp,3;Q)/R. Consequently, Theorem 2 applied for p = p guarantees
that for the ensemble of trellis source codes (for which the N symbols from the alphabet
V are assigned independently and according to p(v) to the branches of the trellis) the
average distortion converges to the fidelity level D exponentially with increasing K .

Since this is true for all @ in the uncertainty class, the proof is completed.

As discussed at the end of the proof of Theorem 3 the choice of the operating point
depends on our objective. For trellis source codes, if our main objective is to minimize
the required rate, then the operating point should be (p,p,§) where

p = arg min [Eo(p,p,7;Q) - pR ); otherwise the operating point should be (o' ,p’ ,§)
p

where (p! ,p’ ) is defined as in Theorem 4 and the rate B should satisfy B >I(p' ,§;§)
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instead of (29).

Finally notice that all the minima involved in Theorem 4 [the minimizing argu-
ments are (o' ,p' ) and p] exist, since the functions Dg (p,p,3;Q ) and Dg (p,p,§;Q) are

convex in (p,p) and p, respectively, p€[-1,0] and p belongs to a convex class.
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III. ROBUST CODING FOR STATIONARY GAUSSIAN SOURCES

In this section we describe the problem formulation and the results for robust
minimax coding under a fidelity criterion for stationary Gaussian sources with spectral
uncertainty. We do not include the proofs of the results, since they basically follow the
same steps as the proofs of the corresponding results of Section II and involve tecniques
similar to those used there. We start with the description of spectral uncertainty classes
generated by Choquet capacities.

Suppose that U = V = (~co0,00) for the source and user alphabets and the
discrete-time stationary Gaussian source (SGS) is characterized by the probability den-
sity function ¢, (u) for u€U"

n 1
) =(m * |8, | ®exp{-u (@, "u). (349)
In (34) | | denotes the determinant of a matrix and &, is a correlatiom matrix of order
n, which because of the stationarity is a symmetric Toeplitz matrix, associated to the
spectral density ¢(w), we[-7,7].

Suppose that the spectral density ¢ is the Radon-Nikodym derivative of a spectral
measu<re ® defined on sets A €B where B is the o-algebra generated by subsets of
Q = |-m,7]. The spectral measure ¢ is only known to lie in the convex class &, defined

by

@, = {20 | ®(4) < w(A),VAEB ;9(Q) = w(Q)}. (35)

In (35) @ is the class of all spectral measures on (2,B) and w is a 2-alternating capacity
on (1,B). We impose on the spectral measures & the additional constraint
&([~m,7])) = w ([~m,7]) = 2w0® which is a fized source wariance constraint and

transforms the normalized spectral measures ®(A )/(270%) into probability measures; this



-22-

is necessary for the validity of the Huber-Strassen theory of least-favorability. Another
implication of the fixed variance constraint ®([-m,7]) = 2m0? is that ¢(w) has a finite
supremum for w€[-m,7|. Let A denote the global supremum over all ¢ whose spectral

measures ¢ belong to ®.,.

All the results about Choquet capacities and uncertainty classes of probability
measures generated by them presented in Section II.A are also valid for the spectral
uncertainty classes. Let ¢ and & denote the Huber-Strassen derivative and the least-
favorable spectral measure in this case. In analogy to Section III.LA we assume that
d << A, i.e., that ® is absolutely continuous with respect to A\, the Lebesgue measure
on = [~m,m|. This assumption is satisfled if &, <<<< X for the band class and &, <<< A

for the e-contaminated and total variation neighborhood classes.

For a single-letter mean-square-error distortion measure d(u,v) = (v-u)?

(u,v)EU XV the average distortion constraint takes the form:
E{]|U-V]|%}<nD, (36)

where || || is the Euclidean norm of the n-dimensional random vector U — V, the expec-
tation B is with respect to the n-dimensional distribution of ({/,V), and D is a fixed

fidelity level.

Suppose that in the presence of uncertainty about ¢ the user mistakenly assumes
that & is the spectral measure governing the statistics of the discrete-time stationary
Gaussian source. Let ¢ denote the R-N derivative of & and 215 denote the spectral den-
sity of ®, that is, we assume that ® << X\, where X is the Lebesgue measure on €. Let
Q, and Q, (Q, <<\) be the n-th order probability measures induced by the spectral

measures & and ;b, respectively.



-23-

The above situation is characterized by mismatch as in the case desribed in
Theorem 1. Therefore we can apply Theorem 1 to this special case. For the evaluation
of the mismatch mutual information and mismatch distortion exponent functions it is
now advantageous to follow the technique [24, Section 4.5.2] and make the problem
equivalent to that of n independent zero-mean Gaussian DMS’s. This involves a unitary
transformation of ¥ and v associated with };n which preserves the mutual information

relationships and the mean-square-error (MSE) distortion constraint.

Flirthermore, because of the Gaussian statistics we restrict attention to auxiliary

conditional pdf’s p, (v | u) of the form
1

Pa(e ) = @0 " 7| An B | *fexp{pu-4, 1) (A4 By M 0-Ap )} (37)

wh_ere A, = diag (ql,az,...,an) (a; >0 for 1 = 1,2,...,n) is associated with a spectral

density a (w), wE[-m,7], and the n-th order Toeplitz matrix K, is associated with spectral

density r(w), wE[-m,m]. We considered the matrix A, instead of the identity matrix I,

(i.e., v~A, u instead of v—u) because p, (v | v), defined by (37) for A, = I, and satis-

fying (36), is too restrictive to allow for the minimization of the mutual information

function.

Once the SGS has been decomposed to n independent Gaussian DMS’s we can
apply the theory of [24, Section 4.5.2], (34), (37), the definitions (13) and (15a) - (15b) of
Theorem 1 and the discrete-time version of the Toeplitz Distribution theorem [25] to to
put the asymptotic (in the limit of large n) mismatch mutual information function and

mismatch distortion exponent in the form:

a(w)?é(w)] 4 @IS vy g,

8 (38)
r (w) a (Wyp(w)+r (W)

I(a,r.$;0) = -4—;—]4{171 n+
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and

.

Eyp,a,r,$;¢) = 21; f_: pln [1—!—————(1 (@)9(w) ] + In [H— pa ()[¢(w)-¢(w)] A(d w).

(1+p)r (W) (1+p)[a (W)g(w)+r (w)]
(39)
and the average distortion constraint in the form:
D(a.r )= = {la(@) - 1" $() + a(@r @}Ndw) < D, (40)

Notice that as explained in [24, Section 4.5.2] for the matched case the quantities above
depend on ¢, the R-N derivative of &, and not on ¢ itself; they only depend on ~¢
because we assumed that &<<\. For the quantities above we have that
I(a,r,¢;¢) > 0 and Ey(p,a,r #:4) <0 for 0 < p <1 and all pairs (ar). These ine-

qualities can be proved in the same way as the corresponding inequalities I(p,q Q) 2 0

and Eo(p,p ,7;Q) < 0 in Section ILB.

Next we consider the pair (@,7) which minimizes [(a,r ,$:$), the asymptotic
mutual information function, for the matched case (~¢=d>). This pair has been shown in

(24, Section 4.5.2] to be defined in terms of a parameter 9 as:

(W) = (41a)

LBy 10 < )
0; if pw) <0

and
7 (W) — wEl-m,7]. (41b)

The parameter 0 is determined by the condition D(a7 ,0) = D or equivalently:

D (0,¢) = ?17; [ : min{0,¢(w) INdw) = D. (42)
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The parameter @ lies in the range [0,A] where A is the essential supremum of ¢ (see
[24]). Similarly, the condition D (a7 ,¢)<D is transformed into
. 1 0 2 -
D(0,4) = — i Ad - 0 — — Mdw) < D.
@8) = 5 Ly B @NAW) + [, 0 + 1= o P R@SINdW) < D (43)

We now state the main corresponding to Theorem 1 result for stationary Gaussian

sources:

Theor'_em 5: Consider a discrete-time stationary Gaussian source with n-th order distribu-
tion @, induced by the spectral measure &(w), wE[-m,7], and a n-th order conditional
pdf P, (v |u) for (u,0)EU" X V" of the form (36) induced by the spectral densities
@ (w) and 7 (w), wE[-m,7], defined by (41a)-(41b), where the parameter 0 satisfies the aver-
age distortion constraint (42). Assume that for a given source sequence u€U" the
source encoder chooses the codeword ¥ € V" which minimizes | |z-u | |. Consider the
ensemble of block source codes of length n and rate R whose codewords are chosen
independently with equal probability and the n letters of each codeword are chosen
from the user alphabet V according to p(z) = fun?’" (w)p, (v | )N, (du), veV",

where the pdf 7, (u) is induced by the spectral density ¢. Then, if

D(0.¢) < D(0.9), (44)
where the two quantities are defined by (42) - (43), and the rate R satisfles

R >1(0,4;¢), (45)

where,

10.9:6) =4[, S.W,)}{ L) [1—:&% }ﬁ;ww) - b(w)}}x(dw),(%)

then the average distortion 176 over the enseble of block source codes is for large n
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upperbounded by
D <D +v3A exp{-——;—n (E o(0,0,6;0)-pR | }, (47)

where A is the global supremum of ¢ for the class of (35) and for p€[-1,0]:

P+ ¢(w)

— + In
(1+p)0

_plp)-0)_ ][as(w)—zzs(w)} }x(d ).

Eolpb.:¢) = f(as?»(w)}{ pin (1+p)d(w)?

(48)

For of this theorem to be valid it is required that I(0,¢;0)>0 and E o(p,0,4;6)<<0 for all

p in [-1,0]. These inequalities are satisfied for all nontrivial 8, ~({) and ¢.

Remark 5: The functions I(0,4;4) and E 4(p,0,4;¢) represent the mismatch rate distortion

function and the mismatch distortion exponent, respectively.

-

The corresponding result for trellis source codes is:

Theorem 6: Under the assumptions of Theorem 5, consider the ensemble of trellis codes

of constraint length K and rate K = _1}\7 In M satisfying (45) which is generated by

assigning /N letters from the wuser alphabet V  according to the pdf
() = fU” v (w)pn (2 | w)hy (du), vEVN . Then, provided that eq. (44) is satisfied,

the average distortion D—c over the ensemble of trellis source codes is upperbounded by

1
—(K-1)p
vV3ia M?2 (49)

D :6: Py =D + 'y
i (p.0.0;0) ‘- AI—[E0(9'0'¢:¢)/R -l

where -1 < p < E(p,0,4;6)/R and the parameter 0 is determined by (42).

In the presence of uncertainty about the statistics of the source, in particular in the

presence of spectral uncertainty within the classes defined by (35), the goal is to choose ~q§
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involved in Theorems 5 and 6 above so that, if the code rate for the codes of the ensem-
bles considered in these two theorems is larger than a critical rate, then the average dis-

tortion converges asymtotically to D for all sources in the class.

The result corresponding to Theorem 3 is:

Theorem 7: Suppose the spectral measure ¢ (let ¢ = d ®/d \) belongs to a class of the
form (35) and ® (with & << X and ¢ = d ®/d \) is the element of the class singled out
by Lemma 1. Then (9,0;$) where 8 satisfies D (8,§) = D [apply (42) for ¢ = @] is a sad-

dle point for min max I(0,4;$) under the fidelity constraint D (6,4)<D, i..,
(6.9) ¢

1(8,:¢) < 1(8.9:0)<1(0.4:9), (50)
where D (0,)<D and D (§,9)<D for all $ = d ®/d X with & in &; it is also a least-

favorable operating point for the distortion exponent,that is,

Eo(p.0.8:6) > Eo(p.0.8:9) (51)

for all p in [-1,0]. Finally the condition
R > 1(8,4:9) (52)

is sufficient and necessary to guarantee that for the ensemble of block source codes of
length n .and rate R (described in Theorem 5, just set 6 = &) the average distortion
converges to the fidelity level D exponentially with increasing n for all sources in the

class.

Remark 6: The quantity I(0,¢;4) given parametrically by

1 (RN (53a)

1(9,{25;55) == an {8<d(w)} 0
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DOH=-L [ min{@3@Ndw) = D (53b)

represents the rate distortion function of the class determined by (35). For the same
class of spectral measures this function was derived in [12] directly from the definition

sugR8 (D). No coding theorems were derived in [12]. In contrast, our emphasis in this
8e

Section was on the mismatch and the minimax robust theorems for block and trellis

source coding.

The discussion for the choice of the operating point is similar to that which fol-
lowed the proof of Theorem 3 and we do not repeat it here. The corresponding result

for trellis codes is:

Theorem 8: Under the assumptions of Theorem 7 condition (52) guarantees that for the
ensemble of trellis source codes of constraint length' K and rate B the average distortion
converges to the fidelity level D exponentially with increasing K for all sources in the

class. Furthermore, if we define (p' 0 )==arg r(mar)l Dy (p,0,0;6)  where
o
~1<p<Ep.0,¢;0)/R and D (0,0)<D, then the following inequalities are true.
D (p' 0" .4:0) < Dg(p' .0 ,6:8) < Dk (p,6,6;9). (5%

It should be noted that the rate distortion function for the class of discrete-time
SGS’s with spectral uncertainty, which is given parametrically by (53a) - (53b), can also
serve as an upper bound for the rate distortion function of class of discrete-time station-
ary ergodic non-Gaussian sources with the same spectral characteristics. This is the
case, since the Gaussian source is known to have ([24, Section 4.6.2]) the largest rate dis-
tortion function among the stationary ergodic sources with the same spectral characteris-

tics.
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Finally, all t,hé results of this section can be extended to conlinuous-time stationary
Gaussian bandlimited (e.g., with spectral densities defined on € = [~wy,w,]) sources.
Since Huber-Strassen derivatives of capacities with respect to o-finite (and not finite)
measures can be constructed {22, Chapter IV], these results can be extended to non-

bandlimited [that is, with spectral densities defined on 2 = (~00,00)] sources.
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IV. SUMMARY AND CONCLUSIONS

We have addressed the problem of Iﬁinimax robust coding for sources with uncer-
tainty in their statistical description. First, the mismatch source coding problem under
a fidelity criterion was formulated and the appropriate coding theorems were established.
Then, for uncertainty classes determined by 2-alternating capacities coding theorems
were proved for discrete memoryless sources with uncertainty in the probability distribu-
tion and single-letter difference distortion criteria; and for stationary Gaussian sources
with spectral uncertainty and the mean-square-error distortion criterion. It was esta-
blished that there exist random block source codes and random trellis source codes such
that the average distortion converges to the prescribed fidelity level exponentially with
increasing block length or constraint length, respectively, for all sources in the class, pro-
vided that the code rates are larger than a critical rate. The rate distortion.fgmnction for
the class of sources and the distortion exponent were evaluated. These quantities, as
well as the ensembles of random block and trellis source codes were characterized in
terms of a Radon-Nikodym type derivative between the upper measure of the uncer-

tainty class and a Lebesque measure defined on the appropriate set.
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